SPECIFICATIONS

PCIe-5775

12-Bit, 6.4 GS/s, 2-Channel PCI FlexRIO Digitizer Device

This document lists the specifications for the PCIe-5775. Specifications are subject to change without notice. For the most recent device specifications, refer to *ni.com/support*.

Note These specifications are typical at 25 °C unless otherwise noted.

Contents

Definitions	1
Digital I/O	2
Digital I/O Single-Ended Channels	
Digital I/O High-Speed Serial MGT	3
Reconfigurable FPGA	
Onboard DRAM	
Analog Input	. 5
General Characteristics	
Typical Specifications	5
REF/CLK IN	
General Characteristics.	10
Bus Interface	12
Maximum Power Requirements	12
Physical	
Environment	
Operating Environment	13
Storage Environment	

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Digital I/O

Connector	Molex TM Nano-Pitch I/O TM
5.0 V Power	±5%, 50 mA maximum, nominal

Table 1. Digital I/O Signal Characteristics

Signal	Туре	Direction
MGT Tx± <03>1	Xilinx UltraScale GTH	Output
MGT Rx± <03>1	Xilinx UltraScale GTH	Input
DIO <07>	Single-ended	Bidirectional
5.0 V	DC	Output
GND	Ground	_

Digital I/O Single-Ended Channels

Number of channels	8
Signal type	Single-ended
Voltage families	3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V
Input impedance	100 kΩ, nominal
Output impedance	50 Ω, nominal
Direction control	Per channel
Minimum required direction change latency	200 ns
Maximum output toggle rate	60 MHz with 100 μA load, nominal

Multi-gigabit transceiver (MGT) signals are available on devices with KU040 and KU060 FPGAs only.

Table 2. Digital I/O Single-Ended DC Signal Characteristics²

Voltage Family	V _{IL}	V _{IH}	V _{OL} (100μA load)	V _{OH} (100μA load)	Maximum DC Drive Strength
3.3 V	0.8 V	2.0 V	0.2 V	3.0 V	24 mA
2.5 V	0.7 V	1.6 V	0.2 V	2.2 V	18 mA
1.8 V	0.62 V	1.29 V	0.2 V	1.5 V	16 mA
1.5 V	0.51 V	1.07 V	0.2 V	1.2 V	12 mA
1.2 V	0.42 V	0.87 V	0.2 V	0.9 V	6 mA

Digital I/O High-Speed Serial MGT³

Note MGTs are available on devices with KU040 and KU060 FPGAs only.

Data rate	500 Mbps to 16.375 Gbps, nominal			
Number of Tx channels	4			
Number of Rx channels	4			
I/O AC coupling capacitor	100 nF			
MGT TX± Channels				
Minimum differential output voltage ⁴	170 mV pk-pk into 100 Ω , nominal			
I/O coupling	AC-coupled with 100 nF capacitor			
MGT RX± Channels				
Differential input voltage range				
≤ 6.6 Gb/s	150 mV pk-pk to 2000 mV pk-pk, nominal			
> 6.6 Gb/s	150 mV pk-pk to 1250 mV pk-pk, nominal			
Differential input resistance	100 Ω , nominal			
I/O coupling	DC-coupled, requires external capacitor \triangle			

² Voltage levels are guaranteed by design through the digital buffer specifications.

³ For detailed FPGA and High-Speed Serial Link specifications, refer to Xilinx documentation.

^{4 800} mV pk-pk when transmitter output swing is set to the maximum setting.

Reconfigurable FPGA

PCIe-5775 modules are available with multiple FPGA options. The following table lists the FPGA specifications for the PCIe-5775 FPGA options.

Table 3. Reconfigurable FPGA Options

	KU035 KU040		KU060	
LUTs	203,128	242,200	331,680	
DSP48 slices (25 × 18 multiplier)	1,700	1,920	2,760	
Embedded Block RAM	19.0 Mb	38.0 Mb		
Data Clock Domain	200 MHz, 16 samples per cycle per channel (dual channel mode), 32 samples per cycle (single channel mode)			
Timebase reference sources	Onboard 100 MHz oscillator			
Data transfers	DMA, interrupts, programmed I/O, programmed I/O multi-gigabit transceivers			
Number of DMA channels		60		

Note The Reconfigurable FPGA Options table depicts the total number of FPGA resources available on the part. The number of resources available to the user is slightly lower, as some FPGA resources are consumed by board-interfacing IP for PCI Express, device configuration, and various board I/O. For more information, contact NI support.

Onboard DRAM

Memory size	4 GB (2 banks of 2 GB)
DRAM clock rate	1064 MHz
Physical bus width	32 bit
LabVIEW FPGA DRAM clock rate	267 MHz
LabVIEW FPGA DRAM bus width	256 bit per bank
Maximum theoretical data rate	17 GB/s (8.5 GB/s per bank)

Analog Input

General Characteristics

Number of channels	2, single-ended, simultaneously sampled
Connector type	SMA
Input impedance	50 Ω
Input coupling	AC
Sample Clock	
Internal Sample Clock	3.2 GHz
External Sample Clock	2.8 GHz to 3.2 GHz
Sample Rate	
Dual channel mode	3.2 GS/s per channel
Single channel mode	6.4 GS/s
Analog-to-digital converter (ADC)	ADC12DJ3200, 12-bit resolution
Input latency ⁵	239 ns

Typical Specifications

Full-scale input range	1.25 V pk-pk (5.92 dBm) at 10 MHz
AC gain accuracy	±0.11 dB at 10 MHz
DC offset	±2.19 mV
Bandwidth (-3 dB) ⁶	500 kHz to 6 GHz

Table 4. Single-Tone Spectral Performance, Dual Channel Mode

	Input Frequency				
	99.9 MHz	399 MHz	999 MHz	1.999 GHz	2.499 GHz
SNR ⁷ (dBFS)	56.0	55.6	54.7	52.9	51.6
SINAD ⁷ (dBFS)	55.5	55.0	54.0	51.8	50.8
SFDR (dBc)	-64.9	-63.4	-62.7	-59.9	-58.6
ENOB ⁸ (bits)	8.9	8.8	8.7	8.3	8.1

⁵ SMA input to LabVIEW diagram

⁶ Normalized to 10 MHz.

⁷ Measured with a -1 dBFS signal and corrected to full-scale. 3.2 kHz resolution bandwidth.

⁸ Calculated from SINAD and corrected to full scale.

Table 5. Single-Tone Spectral Performance, Single Channel Mode⁹

	Input Frequency				
	99.9 MHz	399 MHz	999 MHz	1.999 GHz	2.499 GHz
SNR ⁷ (dBFS)	54.6	54.2	52.4	49.7	48.9
SINAD ⁷ (dBFS)	54.4	53.9	52.1	49.4	48.6
SFDR (dBc)	-61.7	-60.4	-56.1	-51.7	-51.1
ENOB ⁸ (bits)	8.7	8.7	8.4	7.9	7.8

Table 6. Noise Spectral Density¹⁰

Mode	$\frac{nV}{\sqrt{Hz}}$	dBm Hz	dBFS Hz
Dual channel	14.4	-143.8	-149.2
Single channel	9.8	-147.2	-152.6

Note Noise spectral density is verified using a 50 Ω terminator connected to the input.

⁹ Measured using channel AI0. Spectral performance may be degraded using channel AI1.
10 Excludes fixed interleaving spur (Fs/2 spur).

Figure 1. Single Tone Spectrum (Dual Channel Mode, 99.9 MHz, -1 dBFS, 3.2 kHz RBW), Measured

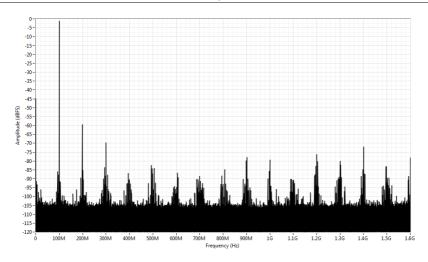


Figure 2. Single Tone Spectrum (Dual Channel Mode, 1.999 GHz, -1 dBFS, 3.2 kHz RBW), Measured

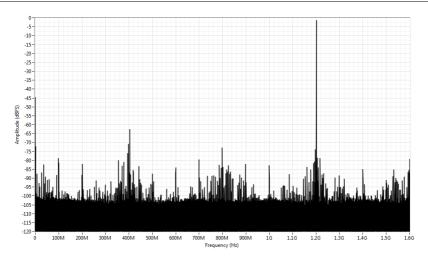
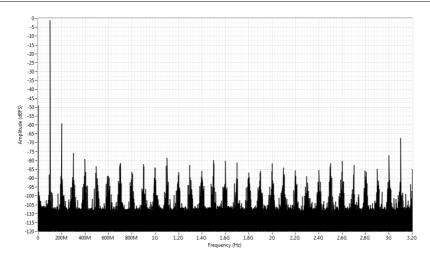
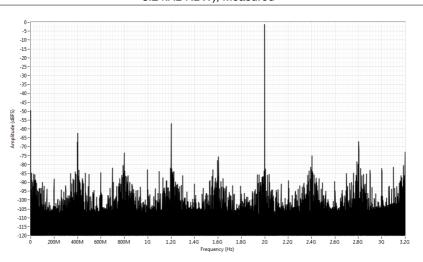
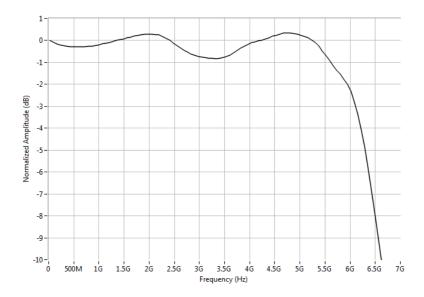
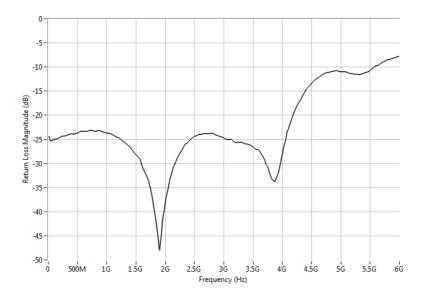


Figure 3. Single Tone Spectrum (Single Channel Mode, 99.9 MHz, -1 dBFS, 3.2 kHz RBW), Measured


Figure 4. Single Tone Spectrum (Single Channel Mode, 1.999 GHz, -1 dBFS, 3.2 kHz RBW), Measured



Channel-to-channel crosstalk, measured	
99.9 MHz	-92.5 dB
399 MHz	-85.5 dB
999 MHz	-76.5 dB

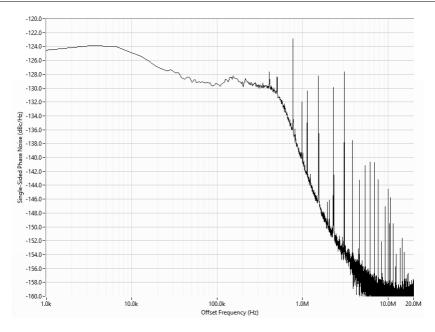
2.499 GHz -67.4 dB

Figure 5. Analog Input Frequency Response, Measured

REF/CLK IN

General Characteristics

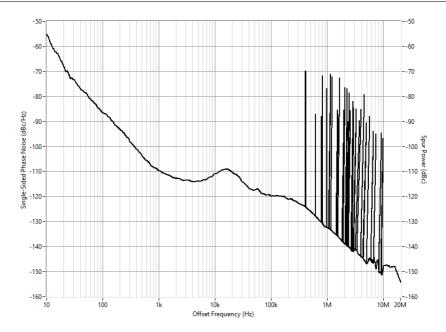
Connector type	SMA
Input impedance	50 Ω
Input coupling	AC
Input voltage range	0.35 V pk-pk to 3.5 V pk-pk, nominal
Absolute maximum voltage	±12 V DC, 4 V pk-pk AC
Duty cycle	45% to 55%
Sample Clock jitter	
Analog input	86.8 fs _{rms} , measured ¹¹
Analog output	198.8 fs _{rms} , measured ¹²


¹¹ Integrated from 3.2 kHz to 20 MHz. Includes the effects of the converter aperture uncertainty and the clock circuitry jitter. Excludes trigger jitter.

¹² Integrated from 1 kHz to 30 MHz. Includes the effects of the converter aperture uncertainty, converter PLL circuitry, and the clock circuitry jitter. Excludes trigger jitter.

Table 7. Clock Configuration Options

Clock Configuration	External Clock Frequency	Description
Internal Baseboard Reference Clock ¹³	10 MHz	The internal Sample Clock locks to the 10 MHz Reference Clock provided from the FPGA baseboard.
External Reference Clock (REF/CLK IN)	10 MHz ¹⁴	The internal Sample Clock locks to an external Reference Clock, which is provided through the REF/CLK IN front panel connector.
External Sample Clock (REF/CLK IN)	2.8 GHz to 3.2 GHz	An external Sample Clock can be provided through the REF/CLK IN front panel connector.


Figure 7. Analog Input Phase Noise with 800 MHz Input Tone, Measured

¹³ Default clock configuration.

The external Reference Clock must be accurate to ± 25 ppm.

Figure 8. Analog Output Phase Noise with 1 GHz Output Tone, Measured

Bus Interface

Card edge form factor	PCI Express Gen-3 x8
Slot compatibility	x8 and x16 PCI Express slots

Maximum Power Requirements

Note Power requirements are dependent on the contents of the LabVIEW FPGA VI used in your application.

+3.3 V	4.5 A
+12 V	5 A
Maximum total power	75 W

Physical

Dimensions (including I/O bracket, not including connectors)	12.6 cm \times 26.3 cm \times 4 cm (5.0 in. \times 10.4 in. \times 1.6 in.)
Weight	990 g (35 oz)
PCI Express mechanical form factor	Standard height, three-quarter length, double slot
Integrated air mover (fan)	Yes
Maximum rear panel exhaust airflow	84 m ³ /h (50 CFM) (without any chassis impedance)

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Operating temperature, local ¹⁵	0 °C to 45 °C
Operating humidity	10% to 90% RH, noncondensing

Storage Environment

Ambient temperature range	-20 °C to 70 °C
Relative humidity range	5% to 95% RH, noncondensing

¹⁵ For PCI Express adapter cards with integrated air movers, NI defines the local operational ambient environment to be at the fan inlet. For cards without integrated air movers, NI defines the local operational ambient environment to be 25 mm (1 in.) upstream of the leading edge of the card.

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents. txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL ND ELIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

377961B-01 January 28, 2020